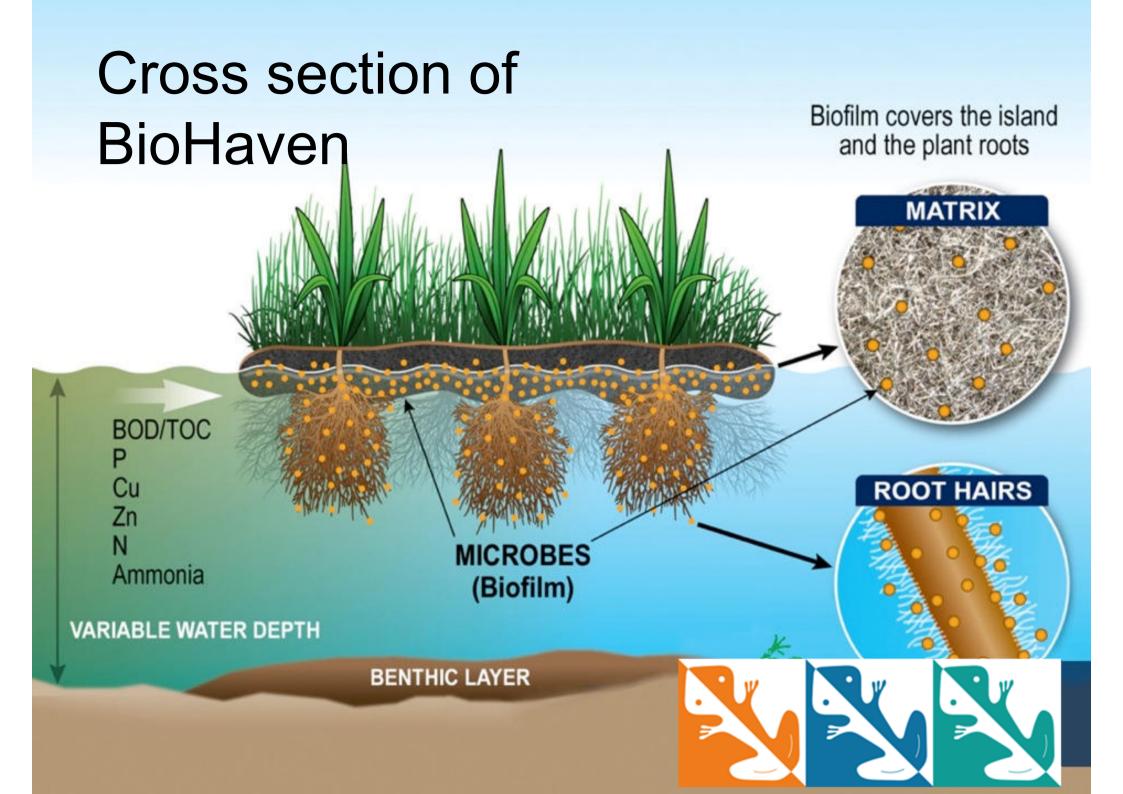
In- und ausländische Erfahrungen mit schwimmenden Inseln

Straßburg: Canal du Rhone a Rhin

Bauweisen und Erfahrungen

Verschiedene Systeme


- BioHaven (England, Australien, USA)
- Biomatrix (Frankreich, England)
- Schwimmende Mycel-Inseln (Hamburg, Australien)
- Schwimmendes Röhricht (Frankreich, Deutschland)
- Plastikfreie Inseln (Holland, Deutschland)

Konstruktive Grundlagen

- Auftrieb
- Basisstruktur und Wurzelraum
- Pflanzung
- Schutz Pflanzung / Schutz Tiere

Funktionen

- Biodiversität, Wildlife
- Wasserreinigung

Struktur:

Gepresstes Wirrvlies aus Kunststoff

Hohe Steifigkeit und Haltbarkeit

Gute Durchwurzelung

Verbindung mit Bodengitter, Rasenwaben

Auftrieb:

Schaum

Früher:

Stärke 15 cm, Bepflanzung mit Einzelpflanzen

Jetzt:

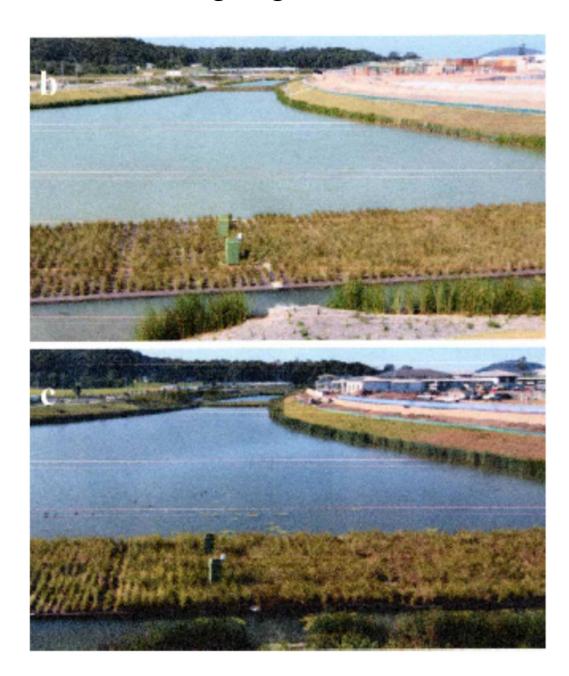
Stärke 5 cm,

Bepflanzung mit Röhrichtmatten

Durchwurzelungsmedium

Oben: Einzelpflanzen

Unten: Röhrichtmatte



Australien, Wasserreinigung

In Australien und Neuseeland:

Einsatz von größeren Inseln (1.000 – 3.000 qm) zur Reinigung von Oberflächenwässern

Untersuchungen in Australien (Schwammberger), Neuseeland (Born), England (Dodkins).

Biomatrix water

Technisch stabil,

Hydraulisch belastbar

Begehbar

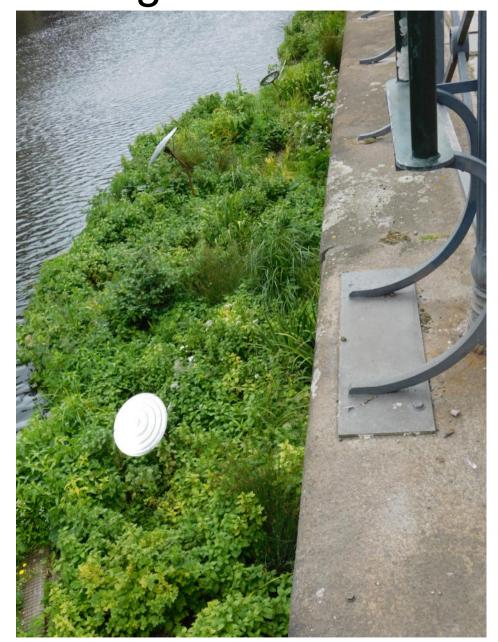
PE-Rohre mit Kokosmatten umhüllt,

Durchwurzelungssubstrat Kokosfaser,

Ähnlich der Schwimmkampen in Deutschland (80 er, 90 er Jahre)

Rennes, Frankreich

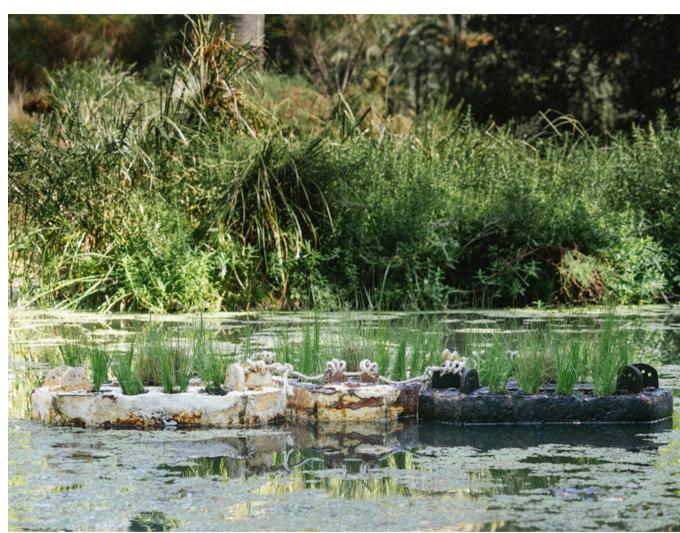
Bepflanzt mit Einzelpflanzen


Entwicklung Pflanzen

Pflanzen entwickeln sich gut.

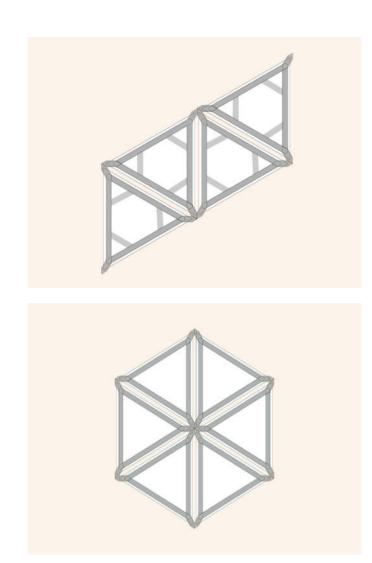
Am Anfang intensive Bewässerung notwendig- gut.

80 % Mentha aquatica (gut für Bienen und Schwebfliegen)


Geringe Biodiversität

Mycel-Inseln morgen. Beate Kapfenberger und Martha Starke GbR

Melbourne | Projekt »Mushi« | Arup, Swinburne University, Studio Edwards, Royal Botanic Gardens Victoria



Seattle | Projekt »Floating Wetlands« | University of Washington

Hamburg | Projekt »Grünes Wasser«

Hamburg | Projekt »Grünes Wasser«

Hamburg | Projekt »Grünes Wasser«

Schwimmendes Röhricht, Standard

Grundstruktur Bodengitter / Rasenwaben Recycled, haltbar, modular, Preiswert

Bei geringer hydraulischer Beanspruchung

Auftrieb mit Styrodur-Platten

Wasserbaulich zugelassen

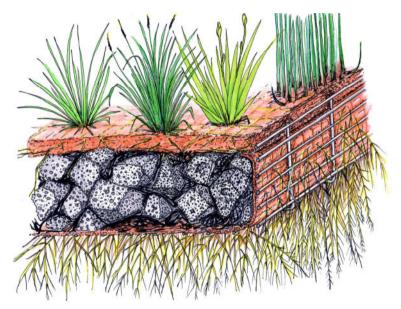
Canal du Rhone a Rhin

1.500 qm an einem Kanal

Straßburg

Beanspruchung durch Sportboot und Berufsschifffahrt (geringerer Größen)

Montpellier


Versuch an einem "Schönungsteich" mit 1.000 qm. Unterbindung des Algenwachstums durch Unterbindung der Photosynthese.

Geringer Sauerstoffeintrag

Aqua-flora plastikfrei

Einfassung mit Stahlgittern (+ Kokosgewebe)

Auftrieb + Verwurzelungsmedium aus Glasschotter

www.aqua-flora.eu

Installation Alster

Installation Nürnberg

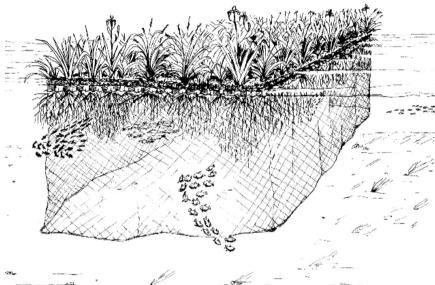
Rotterdam

Nautilus. 1.500 qm in Neubaugebiet. Schwankende Wasserstände. Leicht salin.

Spanien: Korkinseln

natürliches Material natürlicher Auftrieb lang haltbar ästhetisch

durchwurzelbar?



Schutz der Fischpopulation

Schutz der Fische. Keine Bekämpfung des Kormorans.

Interessante Entwicklung mit interessanten Auswirkungen.

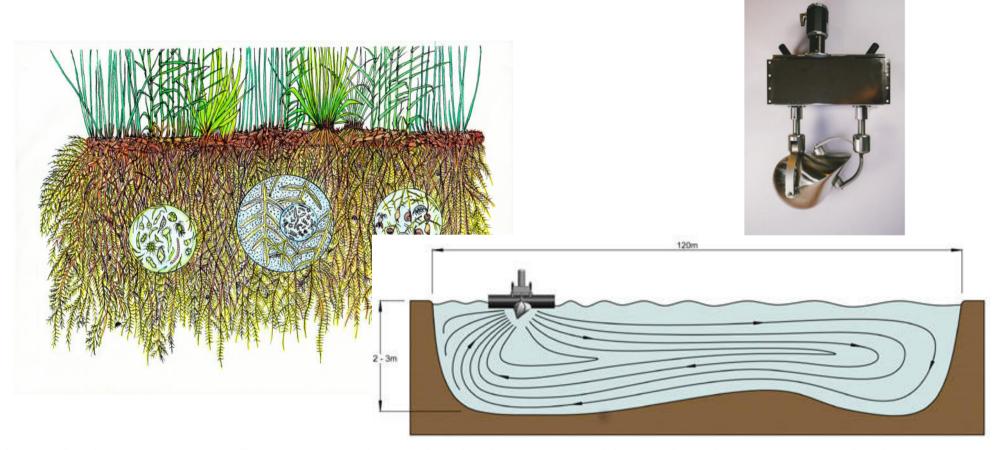
Funktion Auftrieb

Materialien (kontinuierlicher Auftrieb, Holz?)

Höhe bei Einbau (Durchwurzelung erst nach ca. 6 Wochen)

Gewicht der Pflanzen (Biomasse nach Entwicklung ca. 25 kg/qm)

Funktion Wurzelraum / Dicke



Hydraulisch beruhigter und geschützter Bereich (Rhizome, Ausläufer können sich entwickeln – Ausbreitungsstrategie).

Funktion Wasserreinigung

Alles behaupten es. Datenlage ist schwierig. In der Natur ist der Input nicht immer genau zu definieren.

- 1. Halme, Blätter und Wurzeln sind zentral für mikrobiologische Prozesse (Bedeckungsgrad, Sauerstoffeintrag).
- 2. Verweildauer des Wassers im Wurzelbereich; Zirkulation im Wasserkörper. Oloid.
- 3. Belüftung als unterstützende Maßnahme.

Funktion Bepflanzung: Röhrichtmatten

Schnelle und vitale Begrünung ist häufig das entscheidende Kriterium für den Erfolg einer Maßnahme

Schutz vor Wasservögel, Nagern?

Abwägung /
Entscheidung für
Röhrichtzonen als
Besiedlungsfläche und
Lebensraum.
Für Mikroorganismen
und Insekten

- Links
- BioHaven: https://www.frogenvironmental.co.uk/products/biohaven-floating-islands/
- Biomatrix water: https://www.biomatrixwater.com/
- Mycel-Inseln: https://morgen.jetzt/
- Ökon Inseln: http://www.aqua-flora.eu/index.php/de/
- Unterwasser Boxen: https://www.rietmann-oegi.de/Petri-Schutzsystem/
- Oloid, Wasserverteilung: https://oloid.de/